Accessing Unusual Reactivity through Chelation-Promoted Bond Weakening

16 May 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Highly reducing Sm(II) reductants and protic ligands were used as a platform to ascertain the relationship between low-valent metal-protic ligand affinity and degree of ligand X-H bond weakening with the goal of forming potent PCET reductants. Among the Sm(II)-protic ligand reductant systems investigated, the samarium dibromide N-methylethanolamine (SmBr2-NMEA) reagent system displayed the best combination of metal-ligand affinity and stability against H2 evolution. Use of SmBr2-NMEA afforded the reduction of a range of substrates that are typically recalcitrant to single electron reduction including alkynes, lactones, and arenes as stable as biphenyl. Moreover, the unique role of NMEA as a chelating ligand for Sm(II) was demonstrated by the reductive cyclization of unactivated esters bearing pendant olefins in contrast to the SmBr2-water-amine system. Finally, the SmBr2-NMEA reagent system was found to reduce substrates analogous to key intermediates in the nitrogen fixation process. These results reveal SmBr2-NMEA to be a powerful reductant for a wide range of challenging substrates and demonstrate the potential for the rational design of PCET reagents with exceptionally weak X-H bonds.

Keywords

Bond-weakening
PCET
Physical Organic
low-valent samarium

Supplementary materials

Title
Description
Actions
Title
Accessing Unusual Reactivity through Chelation-Promoted Bond Weakening - SI
Description
Supporting Information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.