Electron-rich silicon containing phosphinanes for rapid Pd-catalyzed C-X coupling reactions

13 May 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Palladium-catalyzed cross-coupling reactions are among the most useful and efficient methods for direct access to complex structures in organic synthesis. However, heteroatom-containing compounds can complicate such coupling reactions due to their competitive coordination with the palladium catalyst and electronic effects. As a result, good yields are often only obtained under harsher reaction conditions, such as high temperatures and long reaction times. Here we report the design of a highly active phosphine ligand that provides excellent yields for C-N coupling reactions at ambient temperature. Incorporation of the phosphorus atom into a cyclohexane ring maintains the pyramidal structure of the phosphorus while reducing steric hindrance. This, and a silicon atom in the cyclohexane moiety, results in an electron-rich phosphinane ligand. This novel silicon containing SabPhos ligand can be obtained in excellent yields in a straightforward synthesis. In palladium catalyzed reactions, this ligand facilitates the coupling of a broad range of heteroaryl chlorides via C-C bonds with boronic acids and C-N bonds with secondary amines in excellent yields under mild conditions.

Keywords

Amination
C-C Coupling
Ligand Design
Palladium
Phosphasilinane

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.