A Designed Photoenzyme Promotes Enantioselective [2+2]-Cycloadditions via Triplet Energy Transfer

13 May 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The ability to programme new modes of catalysis into proteins would allow the development of enzyme families with functions beyond those found in nature. To this end, genetic code expansion methodology holds particular promise, as it allows the site-selective introduction of new functional elements into proteins as non-canonical amino acid side chains. Here, we exploit an expanded genetic code to develop a photoenzyme that operates via triplet energy transfer catalysis, a versatile mode of reactivity in organic synthesis that is currently not accessible to biocatalysis. Installation of a genetically encoded photosensitiser into the beta-propeller scaffold of DA_20_00 converts a de novo Diels-Alderase into a photoenzyme for [2+2]-cycloadditions (EnT1.0). Subsequent development and implementation of a platform for photoenzyme evolution afforded an efficient and enantioselective enzyme (EnT1.3, up to 99% e.e.) that can promote selective cycloadditions that have proven challenging to achieve with small molecule catalysts. EnT1.3 performs >300 turnovers and, in contrast to small molecule photocatalysts, can operate effectively under aerobic conditions. A 1.7 Å resolution X-ray crystal structure of an EnT1.3-product complex shows how multiple functional components work in synergy to promote efficient and selective photocatalysis. This study opens the door to a wealth of new excited-state chemistry in protein active sites and establishes the framework for developing a new generation of evolvable photocatalysts with efficiencies and specificities akin to natural enzymes.

Keywords

Photoenzyme
Triplet Energy Transfer
[2+2]-cycloaddition
Genetic Code Expansion
Photocatalysis
Directed Evolution
Enzyme Engineering
Biocatalysis

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Experimental Procedures, Extended Data Figures and Supplementary Information Figures & Tables
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.