Theoretical and Computational Chemistry

Conformational energy benchmark for longer n-alkane chains



We present the first benchmark set focusing on the conformational energies of highly flexible, long n-alkane chains, termed ACONFL. Unbranched alkanes are ubiquitous building blocks in nature, so the goal is to be able to calculate their properties most accurately to improve the modeling of, e.g, complex (biological) systems. Very accurate DLPNO-CCSD(T1)/CBS reference values are provided, which allow for a statistical meaningful evaluation of even the best available density functional methods. The performance of established and modern (dispersion corrected) density functionals is comprehensively assessed. The recently introduced r²SCAN-V functional shows excellent performance, similar to efficient composite DFT methods like B97-3c and r²SCAN-3c, which provide an even better cost-accuracy ratio, while almost reaching the accuracy of much more computationally demanding hybrid or double hybrid functionals with large QZ AO basis sets. In addition, we investigated the performance of common wavefunction methods, where MP2/CBS surprisingly performs worse compared to simple D4 dispersion corrected Hartree–Fock. Furthermore, we investigate the performance of several semiempirical and force field methods, which are commonly used for the generation of conformational ensembles in multilevel workflows or in large scale molecular dynamics studies. Outstanding performance is obtained by the recently introduced general force field, GFN-FF, while other commonly applied methods like the universal force field yield large errors. We recommend the ACONFL as a helpful benchmark set for parameterization of new semiempirical or force field methods and machine learning potentials as well as a meaningful validation set for newly developed DFT or dispersion methods.

Version notes

Revised manuscript addressed comments from peer-review. Added clarifications on the xCBS extrapolation protocol and its motivation. Notable update in the evaluation of the ACONF16 subset, fixing an error in the conformer ordering, which affects the statistics compared to the previous manuscript. Mainly the performance of the semiempirical and force field methods is affected. However, the overall key messages are unaffected by this revision.


Thumbnail image of aconfl.pdf

Supplementary material

Thumbnail image of
Benchmark geometries in xyz format
Thumbnail image of aconfl-si.pdf
Statistical measures
Thumbnail image of aconfl.xlsx
Statistical evaluation of all tested methods

Supplementary weblinks

Benchmark repository
Contains benchmark geometries in xyz format as well as evaluation scripts.