Force-based method to determine the potential dependence in electrochemical barriers

Authors

  • Sudarshan Vijay CatTheory, Technical University of Denmark ,
  • Georg Kastlunger CatTheory, Technical University of Denmark ,
  • Joseph A Gauthier SUNCAT Center for Interface Science and Catalysis & Department of Chemical and Biomolecular Engineering, University of California, Berkeley ,
  • Anjli Patel SUNCAT Center for Interface Science and Catalysis ,
  • Karen Chan CatTheory, Technical University of Denmark

Abstract

Determining ab-initio potential dependent energetics are critical to investigating mechanisms for electrochemical reactions. While methodology for evaluating reaction thermodynamics is established, simulation techniques for the corresponding kinetics is still a major challenge owing to a lack of potential control, finite cell size effects or computational expense. In this work, we develop a model which allows for computing electrochemical activation energies from just a handful of Density Functional Theory (DFT) calculations. The sole input into the model are the atom centered forces obtained from DFT calculations performed on a homogeneous grid composed of varying field-strengths. We show that the activation energies as a function of the potential obtained from our model are consistent for different super-cell sizes and proton concentrations for a range of electrochemical reactions.

Content

Supplementary material

Supporting Information
Supporting information to main manuscript.