Working Paper
Authors
- Huize Wang Max-Planck-Institut für Kolloid- und Grenzflächenforschung Am Mühlenberg 1, 14476 Potsdam, Germany, ,
- Charles Otieno Ogolla Micro‐ and Nanoanalytics Group, University of Siegen, Paul‐Bonatz Str. 9–11, Siegen, 57076 Germany ,
- Gyanendra Panchal Dept. Dynamics and Transport in Quantum Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany ,
- Marco Hepp Micro‐ and Nanoanalytics Group, University of Siegen, Paul‐Bonatz Str. 9–11, Siegen, 57076 Germany ,
- Simon Delacroix LPICM, CNRS UMR 7647, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau 91128, France ,
- Daniel Cruz Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany / Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany ,
- Danny Kojda Dept. Dynamics and Transport in Quantum Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany ,
- Jim Ciston National Center for Electron Microscopy Facility, Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California, USA ,
- Colin Ophus National Center for Electron Microscopy Facility, Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California, USA ,
- Axel Knop-Gericke Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany / Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany ,
- Klaus Habicht Dept. Dynamics and Transport in Quantum Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany, Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany ,
- Benjamin Butz Micro‐ and Nanoanalytics Group, University of Siegen, Paul‐Bonatz Str. 9–11, Siegen, 57076 Germany ,
- Volker Strauss
Max-Planck-Institut für Kolloid- und Grenzflächenforschung Am Mühlenberg 1, 14476 Potsdam, Germany,
Abstract
Nitrogen-doped carbons (NC) are a class of sustainable materials for selective CO2 adsorption. We introduce a versatile concept to fabricate flexible NC-based sensor architectures for room-temperature sensing of CO2 in a one-step laser conversion of primary coatings cast from abundant precursors. By the unidirectional energy impact in conjunction with depth-dependent attenuation of the laser beam, a layered sensor heterostructure with porous transducer and active sensor layer is formed. Comprehensive microscopic and spectroscopic cross-sectional analyses confirm the preservation of a high content of imidazolic nitrogen in the sensor. The performance was optimized in terms of material morphology, chemical composition, and surface chemistry to achieve a linear relative resistive response of up to ∆R/R0 = -14.3% (10% of CO2). Thermodynamic analysis yields ΔadsH values of -35.6 kJ·mol-1 and 34.1 kJ·mol 1 for H2O and CO2, respectively. The sensor is operable even in humid environments (e.g., ∆R/R0,RH=80% = 0.53%) and shows good performance upon strong mechanical deformation.
Content

Supplementary material

Supporting Information
Additional Data and Descriptions on Materials Optimization, Characterization, and Sensor Performance