Impact of Polymer Rigidity on Thermoresponsive Luminescence and Electron Spin Resonance of Polyester-Tethered Single Radicals

Authors

  • Liman Hou Chinese University of Hong Kong, Shenzhen ,
  • Hongxue Xu Chinese University of Hong Kong, Shenzhen ,
  • Xuanyu Zhang Southern University of Science and Technology ,
  • Rui Chen Southern University of Science and Technology ,
  • Zhaoyu Zhang Chinese University of Hong Kong, Shenzhen ,
  • Mingfeng Wang Chinese University of Hong Kong, Shenzhen

Abstract

Stable organic radicals represent a unique type of functional materials for a broad scope of applications in optoelectronic and spintronic devices. A central challenge towards these applications is how to suppress the inter-radical aggregation that often causes aggregation-induced photoluminescence quenching and limits the correlation lifetime of the electron spins from the radicals. Here we report an effective approach to fine-tuning luminescence and spin dynamics using a series of polyester-tethered single radicals, with a common core of carbazole-triphenylmethyl radical but different chains of polyesters with distinct glass transition temperature and rigidity. The rigidity of the polymeric matrices plays a critical role in tuning the luminescence and electron spin resonance of the radicals. The tunable properties of luminescence and electron spin dynamics as well as robust photostability of such polymer-tethered single radicals represent important attributes for cutting-edge applications in optoelectronic devices and quantum information technologies.

Content

Supplementary material

Supporting information
The supplementary materials includes detailed experimental section and additional figures and tables.