Extracting Structural Motifs from Pair Distribution Function Data of Nanostructures using Explainable Machine Learning

25 April 2022, Version 1

Abstract

Characterization of material structure with X-ray or neutron scattering using e.g. Pair Distribution Function (PDF) analysis most often rely on refining a structure model against an experimental dataset. However, identifying a suitable model is often a bottleneck. Recently, new automated approaches have made it possible to test thousands of models for each dataset, but these methods are computationally expensive, and analysing the output, i.e., extracting structural information from the resulting fits in a meaningful way is challenging. Our Machine Learning based Motif Extractor (ML-MotEx) trains an ML algorithm on thousands of fits, and uses SHAP (SHapley Additive exPlanation) values to identify which model features are important for the fit quality. We use the method for 4 different chemical systems including disordered nanomaterials and clusters. ML-MotEx opens for a new type of modelling where each feature in a model is assigned an importance value for the fit quality based on explainable ML.

Keywords

Structure analysis
Pair Distribution Function analysis
Explainable Machine Learning
Nanomaterials

Supplementary materials

Title
Description
Actions
Title
Supplementary information
Description
PDF simulation parameters, SHAP value plots, details on models.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.