A Data-Science Approach to Predict the Heat Capacity of Nanoporous Materials

19 April 2022, Version 1


The heat capacity of a material is a fundamental property that is of significant practical importance. For example, in a carbon capture process, the heat required to regenerate a solid sorbent is directly related to the heat capacity of the material. However, for most materials suitable for carbon capture applications the heat capacity is not known, and thus the standard procedure is to assume the same value for all materials. In this work, we developed a machine-learning approach to accurately predict the heat capacity of these materials, i.e., zeolites, metal-organic frameworks, and covalent-organic frameworks. The accuracy of our prediction is confirmed with novel experimental data. Finally, for a temperature swing adsorption process that captures carbon from the flue gas of a coal-fired power plant, we show that for some materials the heat requirement is reduced by as much as a factor of two using the correct heat capacity.


metal-organic frameworks
nanoporous materials
machine learning
carbon capture

Supplementary materials

Supplementary Materials
Supporting information for ''A Data-Science Approach to Predict the Heat Capacity of Nanoporous Materials''


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.