Abstract
Substrate-selective reactions typically rely on differences in the ground-state reactivity of substrates or their interactions with supramolecular catalyst scaffolds. Here, we show that a photoinduced cross-coupling reaction provides high substrate selectivity that cannot be achieved under thermal conditions. We report a visible-light-promoted, Ni-catalyzed Suzuki–Miyaura cross-coupling of diiodo-boron-dipyrromethene (BODIPY) chromophores displaying high selectivity for mono-arylation, enabling the efficient sequential synthesis of unsymmetrically substituted BODIPYs. Substrate selectivity is maintained in mixtures containing non-absorbing aryl iodides or halogenated BODIPYs with similar absorption. This work demonstrates the potential of substrate photoexcitation-based reaction mechanisms for the selective functionalization of organic chromophores with desirable excited-state properties.
Version notes
Added preliminary mechanistic studies, changed title
Content

Supplementary material

Supporting Information
experimental details, additional optimization, characterization of new compounds, spectroscopic methods and data

TOC graphic
table of contents graphic