Metallic to half-metallic transition driven by pressure and anion composition in niobium oxyfluoride

18 April 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Half-metallic materials play a key role in the development of spintronics, but few suitable materials are known. Continuously varying the ratio of two anions in a single material offers one route to enhance half-metallic behaviour. Here we report the effect of varying the oxide-fluoride ratio in ReO3-type niobium oxyfluoride NbO2-xF1+x using ab initio calculations. Increasing the fluorine content from NbO2F to NbF3 leads to a transition from semiconducting, through metallic, to half-metallic behaviour as x increases. The effect of pressure on this behaviour is also investigated, finding a transition from cubic to rhombohedral symmetry for all compositions below a maximum transition pressure of 5 GPa for x = 0.35. Additionally, we reveal that compositions close to NbF3 are expected to retain rhombohedral symmetry under ambient pressure. The structural phase transition and electronic behaviour are independent for most compositions except those close to NbO1.65F1.35. Here, we discover that the application of moderate pressure can drive the material from metallic to half metallic, offering a new possibility for controlling spin currents.

Keywords

half-metal
oxyfluoride
phase transition
density functional theory

Supplementary materials

Title
Description
Actions
Title
Supplemental Information
Description
Supplemental Information to Metallic to half-metallic transition driven by pressure and anion composition in niobium oxyfluoride containing further plots of convergence and band structure results
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.