Catalysis

Versatile biogenesis of Silver-Copper nanoparticles over arylated pulp sugarcane bagasse- derived biochar: high catalytic performance

Authors

Abstract

Agrowaste-derived materials for the supporting of nanocatalysts is attracting a great attention due to the abundance and the physicochemical features they provide as bio-sourced underlying materials. The main idea is built around the conversion of junk material into functional material, a journey of waste from "trash to treasure". Herein, we suggest a versatile method to elaborate phytochemically reduced Ag/Cu nanoparticles supported on aryl-sulfonated sugarcane bagasse pulp-derived biochar. Biochar was first prepared by a slow pyrolysis of the biomass at 500°C under N2:H2 95%:5% inert atmosphere. Thereafter, in-situ arylation of the biochar surface has been performed to obtain SO3H-biochar. Silver and copper ions loading in SO3H-biochar has been established via a wet impregnation in a hydroalcoholic medium. Finally, the natural liquid extract of sugarcane bagasse has been employed to reduce the metallic ions instead of the toxic NaBH4 very commonly used, the obtained [email protected]/Cu has been characterized by XRD, XPS, SEM and RAMAN spectroscopy. The catalytic activity of the nanocomposite has been investigated in the oxidative degradation of malachite green oxalate. A total mineralization of the dye has been registered and the experimental data was found to give a relatively good fitting to the pseudo-first-order model with a mineralization apparent constant rate equals to 65 10-3 min-1.

Content

Thumbnail image of Chemrxiv submission (V1)04-12-2022.pdf