Medium-density amorphous ice

11 April 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


The amorphous ices govern a wide range of cosmological processes and are potentially key materials for explaining the anomalies of liquid water. A substantial density gap between low-density amorphous (LDA) and the high-density amorphous ices (HDA) with liquid water in the middle is a cornerstone of our current understanding of water. However, here we show that ball milling ‘ordinary’ ice Ih at low temperature gives a structurally distinct medium-density amorphous ice (MDA) within this density gap. These results raise the possibility that MDA is the true glassy state of liquid water or alternatively a heavily sheared crystalline state. Remarkably, the compression of MDA at low temperature leads to a sharp increase of its recrystallization enthalpy highlighting that H2O can be a high-energy geophysical material.


amorphous materials
ball milling

Supplementary materials

Supplementary Materials
This PDF file includes: Materials and Methods Figs. S1 to S14


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.