Guest-induced magnetic exchange in paramagnetic [M2L4]4+ coordination cages

05 April 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Paramagnetic complexes that show magnetically switchable properties show promise in a number of applications. A significantly underdeveloped approach is the use of metallocages, whose magnetic properties can be modulated through host-guest chemistry. Here we show such an example that utilises a simple [CuII2L4]4+ lantern complex. Magnetic susceptibility and magnetisation data shows an absense of exchange in the presence of the diamagnetic guest triflate. However, replacement of the bound triflate by ReBr62- switches on antiferomagnetic exchange between the Cu and Re ions, leading to an S = 1/2 ground state for the non-covalent complex [ReBr62-⸦CuII2L4]2+. Comparison of this complex to a “control” palladium-cage host-guest complex, [ReBr62-⸦PdII2L4]2+, shows that the encapsulated ReBr62- anions retain the same magnetic anisotropy as in the free salt. Theoretically calculated spin-Hamiltonian parameters are in close agreement with experiment. Spin density analysis shows the mode of interaction between the CuII and ReIV centres is through the Re-Br···Cu pathway, primarily mediated through the Cu(dx2-y2)|Brsp|Re(dyz) interaction. This is further supported by overlap integral calculations between singly occupied molecular orbitals (SOMOs) of the paramagnetic ions and natural bonding orbitals analysis where considerable donor-to-acceptor interactions are observed between hybrid 4s4p orbitals of the Br ions and the empty 4s and 4p orbitals of the Cu ions.


Coordination cages
Molecular Magnetism


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.