Photocatalytic degradation of methanol-water in presence of g-C3N4 and graphene/g-C3N4.

05 April 2022, Version 1

Abstract

Photocatalytic production of H2 from the decomposition of water has attracted increased attention, as the environmental damages caused by the rapid evolution of industry are threatening the development of human society. This energy production is considered a green and eco-friendly resource. It has the potential to replace the carbon component of fuelling the society; on the other hand allows for the limitation of greenhouse gas emissions, thereby mitigating the worsening of climate change. While titanium dioxide is widely used in the photocatalytic field, its yield is still low due to the fast recombination of the photo-generated charge carriers. Graphitic carbon nitride (g-C3N4) possessing high thermal and chemical stability, non-toxicity and low band gap energy is a promising candidate for photocatalytic applications. In this study the exfoliation of the bulk g-C3N4 made with melamine was synthesised via a chemical approach using nitric acid at room temperature, in order to get prolonged carrier lifetime. Moreover the surface of bulk g-C3N4 made with melamine and urea and the exfoliated g-C3N4 made with melamine was modified with graphene (0.5 wt% and 1 wt%). Hydrogen generation from methanol/water mix proved that only hydrogen was produced in the unmodified bulk and exfoliated g-C3N4 , while H2, CH4 and CO have been generated in the modified specimens with graphene. This was assigned to the increased spatial charge carrier separation conducted by graphene.

Keywords

Graphitic carbon nitride (g-C3N4)
graphene
photocatalysis
water photocatalytic splitting

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.