Controlled synthesis of SPION@SiO2 nanoparticles using design of experiments

31 March 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The synthesis of single-core superparamagnetic iron oxide nanoparticles (SPIONs) coated with a silica shell of controlled thickness remains a challenge, due to the dependence on a multitude of experimental variables. Herein, we utilise design of experiment (DoE) to study the formation of SPION@SiO2 nanoparticles (NPs) via reverse microemulsion. Using a 33 full factorial design, the influence of reactant concentration of tetraethyl orthosilicate (TEOS) and ammonium hydroxide (NH4OH), as well as the number of fractionated additions of TEOS on the silica shell was investigated with the aim of minimising polydispersity and increasing the population of SPION@SiO2 NPs formed. This investigation facilitated a reproducible and controlled approach for the high yield synthesis of SPION@SiO2 NPs with uniform silica shell thickness. Application of a multiple linear regression analysis established a relationship between the applied experimental variables and the resulting silica shell thickness. These experimental variables were similarly found to dictate the monodispersity of the SPION@SiO2 NPs formed. The overall population of single-core@shell particles, was dependent on the interaction between the number of moles of TEOS and NH4OH, with no influence from the number of fractionated additions of TEOS. This work demonstrates the complexity of the preparative method, and produces an accessible and flexible synthetic model to achieve monodisperse SPION@SiO2 NPs with controllable shell thickness.

Keywords

design of experiment
SPION
silica
core-shell
reverse microemulsion
factorial design

Supplementary materials

Title
Description
Actions
Title
Controlled synthesis of SPION@SiO2 nanoparticles using design of experiments
Description
Supporting Information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.