Time-independent desorption hysteresis in liquid phase sorption experiments: the concept and the models based on gate-sorption site coupling

30 March 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Sorption-desorption hysteresis (SDH) is often observed in liquid phase (solution) sorption experiments with various chemicals on complex natural materials, including soils and sediments. Sorption-desorption interactions with soils and sediments are of significant fundamental and applied interest since they control the transport and fate of chemicals in environmental systems. SDH expressed as a difference between sorption and desorption isotherms determined in solutions may demonstrate time-independent behavior. This work aims to propose a concept that could mechanistically explain and allow predictions of time-independent SDH in three different scenarios: (1) sorbed molecules are entrapped and physically blocked from their exchange with the environment; (2) sorbed molecules are irreversibly bound to sorbent matrix such that the sorption sites capable of irreversible binding are not fully occupied in the presence of non-zero concentrations of solutes; (3) SDH is associated with forming of a non-relaxed sorbent state where the free exchange of sorbate molecules with the environment occurs. The proposed concept introduces the gates present in a sorbent matrix and capable of concentration-dependent cooperative opening/closure, thus acting as a switch: sorbate interactions with sorption sites are allowed at increased solute concentrations but not the opposite. Coupling the gates distribution with the distribution of sorption sites allows addressing each scenario of interest and explaining time-independent SDH. The models developed within the concept can represent and even predict desorption data using a minimal number of adjustable parameters. This predictive potential may be improved by accounting for the assumptions introduced while developing the models.

Keywords

irreversible sorption
blocking
gate effect
soil
sediment
prediction

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.