Chemically tuning attractive and repulsive interactions between solubilizing oil droplets

28 March 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Solubilization is a spontaneous transport process occurring in surfactant-stabilized emulsions that can lead to Marangoni flow and droplet motility. Conventionally, active droplets exhibit self-propulsion and pairwise repulsion due to solubilization processes and/or solubilization products raising the droplet’s interfacial tension. Here, we report emulsions with the opposite behavior, wherein solubilization and/or its products decrease the interfacial tension and cause droplets to attract. We systematically characterize the influence of oil structure, nonionic surfactant structure, and surfactant concentration on the interfacial tensions and Marangoni flows of solubilizing oil-in-water drops. Three regimes corresponding to droplet “attraction”, “repulsion” or “inactivity” are identified and the chemical trends leading to these behaviors are discussed. Notably, droplet inactivity, wherein no convective flow is observed, can still occur even when the droplet is solubilizing at appreciable rates. Droplets that are inactive can be induced to become active through doping of the surfactant continuous phase with another oil type. We believe these studies contribute to a new fundamental understanding of solubilization processes in emulsions and provide guidance as to how chemical parameters can be used to influence the dynamics and chemotactic interactions between active droplets.

Keywords

active matter
emulsions
droplets
micelles
solubilization
Maragoni flow
surfactants
interfaces

Supplementary materials

Title
Description
Actions
Title
Video S1
Description
Video S1
Actions
Title
Video S2
Description
Video S2
Actions
Title
Video S3
Description
Video S3
Actions
Title
Video S4
Description
Video S4
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.