CdS Quantum Dots as Potent Photoreductants for Organic Chemistry Enabled by Auger Recombination

28 March 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Strong reducing agents (< -2.0 V vs SCE) enable a wide array of useful organic chemistry, but suffer from a variety of limitations. Stoichiometric metallic reductants such as alkali metals and SmI2 are commonly employed for these reactions, however considerations including expense, ease of use, safety, and waste generation limit the practicality of these methods. Recent approaches utilizing energy from multiple photons or electron-primed photoredox catalysis have accessed reduction potentials equivalent to Li0 and shown how this enables selective transformations of aryl chlorides via aryl radicals. However, in some cases low stability of catalytic intermediates can limit turnover numbers. Herein we report the ability of CdS nanocrystal quantum dots (QDs) to function as strong photoreductants and present evidence that a highly reducing electron is generated from two consecutive photoexcitations of CdS QDs with intermediate reductive quenching. Mechanistic experiments suggest that Auger recombination, a photophysical phenomenon known to occur in photoexcited anionic QDs, generates transient thermally excited electrons to enable the observed reductions. Using blue LEDs and sacrificial amine reductants, aryl chlorides and phosphate esters with reduction potentials up to -3.4 V vs. SCE are photo-reductively cleaved to afford hydrodefunctionalized or functionalized products. In contrast to small molecule catalysts, the QDs are stable under these conditions and turnover numbers up to 47500 have been achieved. These conditions can also effect other challenging reductions, such as tosylate protecting group removal from amines, debenzylation of alcohols, and reductive ring-opening of cyclopropanecarboxylic acid derivatives.

Keywords

quantum dot
photochemistry
reduction
auger recombination
conPET

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.