Cytochrome c as a distinct modulator of amyloid-beta amyloidogenesis in a peroxide-dependent manner

23 March 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Cytochrome c (Cyt c) is an important, multifunctional protein for controlling cell fate. Emerging evidence suggests a potential role of Cyt c in the amyloid pathology associated with Alzheimer’s disease (AD); however, the interaction between Cyt c and Abeta with the consequent impact on the aggregation and toxicity of Abeta is not known. Here we report the discovery that Cyt c can directly bind to Abeta and alter the aggregation and toxicity profiles of Abeta in a peroxide-dependent manner. Cyt c redirects Abeta peptides into less toxic, off-pathway amorphous aggregates in the presence of hydrogen peroxide (H2O2), whereas it accelerates Abeta fibrillization without H2O2. Such effects can be achieved by three possible mechanisms, including the complexation between Cyt c and Abeta, the oxidation of Abeta by Cyt c and H2O2, and the H2O2-mediated modification of Cyt c. Our studies demonstrate a new function of Cyt c as a modulator against Abeta amyloidogenesis.

Keywords

Metalloprotein
Cytochrome c
Amyloid-beta
Metal Ions
Amyloidogenesis

Supplementary materials

Title
Description
Actions
Title
Cytochrome c as a distinct modulator of amyloid-beta amyloidogenesis in a peroxide-dependent manner
Description
Supplementary Texts and Figures
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.