Installation of cysteine-derived methyllysine mimics on phage-dis- played peptide libraries: optimization of reaction conditions for conversion and phage viability

22 March 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


We report a synthetic methodology for the installation of methyllysine mimics on cysteine-containing peptides and bacteriophage peptide libraries. Strategies that allow for diversity and high throughput screening of PTM-containing peptides are critical for successfully targeting the many methyllysine reader proteins that are misregulated in cancer and disease. We have de- veloped conditions for alkylation of cysteine containing peptides with (2-haloethyl) amines, providing products that closely mimic methyllysine residues. Extensive optimization on C7C peptide phage constructs allowed for the successful installation of Kme3 mimics in 60–70% yields to create post-translational ε-Lys-N-methylated peptide phage libraries. Optimized reaction conditions between 2-bromo-N,N,N-trimethylethaninium bromide and commercially available PhD C7C library produce >2 × 1011 phage parti- cles and libraries of ~2 × 108 diversity in which each peptide sequence contains the Kme3 mimic. This process adds a new fragment into readily available genetically encoded libraries and opens new avenues for high throughput screening that may give rise to new ligands for a variety of methyllysine reader proteins.


post-translational modifications
phage display


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.