Precision synthesis and atomistic analysis of deep blue cubic quantum dots made via self-organization

21 March 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

As a crystal approaches a few nm in size, atoms become nonequivalent, bonds vibrate, and quantum effects emerge. To study quantum dots (QDs) with structural control common in molecular science, we need atomic precision synthesis and analysis. We describe here the synthesis of QDs of lead bromide perovskite via self-organization of a lead malate chelate complex and PbBr3– under ambient conditions. Millisecond and angstrom resolution electron microscopic analysis revealed the structure and the dynamic behavior of individual QDs—structurally uniform cubes made of 64 lead atoms, where eight malate molecules are located on the eight corners of the cubes, and oleylamonium cations lipophilize and stabilize the edges and faces. Lacking translational symmetry, the cube is to be viewed as a molecule rather than a nanocrystal. The QD exhibits quantitative photoluminescence and stable electroluminescence at 460 nm with a narrow half-maximum linewidth of 15 nm, reflecting minimum structural defects. This controlled synthesis and precise analysis demonstrate the potential of cinematic chemistry for the characterization of nanomaterials beyond the conventional limit.

Keywords

quantum dots
lead bromide perovskite
photoluminescence
nanomaterials
electroluminescence
cinematic chemistry

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Supplementary Information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.