Site-Selective Hydrogenation of Electron-Poor Alkenes and Dienes Enabled by a Rh-Catalyzed Hydride Addition/Protonolysis Mechanism

21 March 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The transition metal catalyzed hydrogenation of alkenes is a well-developed technology used on a lab scale as well as on large scales in the chemical industry. Site- and chemoselective mono-hydrogenations of polarized conjugated dienes remain challenging. Instead, stoichiometric main-group hydrides are used rather than H2. As part of an effort to develop a scalable route to prepare geranylacetone, we discovered that Rh(CO)2acac/xantphos based catalysts enable the selective monohydrogenation of electron-poor 1,3-dienes, enones, and other polyunsaturated substrates. D-labeling and DFT studies support a mechanism where a nucleophilic Rh(I)-hydride selectively adds to electron-poor alkenes and the resulting Rh-enolate undergoes subsequent inner-sphere protonation by alcohol solvent. The finding that (Ln)Rh(H)(CO) type catalysts can enable selective mono-hydrogenation of electron-poor (poly)enes provides a valuable tool in the design of related chemoselective reduction processes of unsaturated substrates.

Supplementary materials

Title
Description
Actions
Title
SI - Site-Selective Hydrogenation of Electron-Poor Alkenes and Dienes Enabled by a Rh-Catalyzed Hydride Addition/Protonolysis Mechanism
Description
Experimental procedures and characterization data.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.