Total Synthesis of (–)-Voacinol and (–)-Voacandimine C

21 March 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We describe the first total synthesis of complex aspidosperma alkaloids (–)-voacinol and (–)-voacandimine C via a late-stage C7-methylenation strategy inspired by a biogenetic hypothesis. We envisioned rapid access to these natural alkaloids from a common, symmetrical precursor assembled by methylenation of a D-ring-oxidized variant of the structurally related natural product (–)-deoxoapodine. Chemoselective N9-oxidation of a pentacyclic deoxoapodine precursor enabled the synthesis of the corresponding hexacyclic C8-aminonitrile. Stereocontrolled methylenation of a C8-enamine derivative of deoxoapodine, accessed by ionization of the C8-aminonitrile, afforded a symmetrical dodecacyclic bisaminonitrile as a versatile precursor to these bisindole alkaloids. Final-stage, biosynthesis-inspired, controlled reductive opening of the oxolane substructures of this dodecacyclic intermediate provided a unified approach to (–)-voacinol and (–)-voacandimine C, while direct reduction of the same intermediate afforded the structurally related (–)-methylenebisdeoxoapodine.

Keywords

Alkaloid
Total Synthesis
Heterodimer
Enamine
Iminium Ion

Supplementary materials

Title
Description
Actions
Title
Total Synthesis of (–)-Voacinol and (–)-Voacandimine C, SI
Description
Supporting Information File
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.