Mechanistic study of the mechanochemical PdII-catalyzed bromination of aromatic C–H bonds by experimental and computational methods

17 March 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

An environmentally friendly approach was applied to the palladium-catalyzed halogenation of aromatic C–H bonds by N-halosuccinimide. Neat grinding and liquid-assisted grinding of the Pd(OAc)2 precatalyst in the presence of p-toluenesulfonic acid in a ball mill led to the in situ formation of active palladium species that catalyzed the halogenation of azobenzene. Detailed insight into the mechanism of this process was obtained by in situ Raman monitoring, which revealed the nature of the catalytically active PdII species and intermediates and confirmed the crucial role of p-toluenesulfonic acid and acetonitrile as additives in the catalytic halogenation of azobenzene. By quantum-chemical (DFT) modelling of bromination of cyclopalladated azobenzene three reaction mechanisms were characterized: oxidative addition followed by reductive elimination, with neutral or protonated N-bromosuccinimide (NBS), and electrophilic cleavage with neutral NBS. All three mechanisms seem to be operative, with relative participation depending on the reaction conditions. Two mechanistic features were recognized in the oxidative addition of bromine to palladium atom: the biradical singlet character in the transition state realized with neutral NBS as the active species, and the barrierless migration of Br+ with protonated NBS.

Keywords

halogenation
DFT
mechanochemistry
mechanism
Raman spectroscopy

Supplementary materials

Title
Description
Actions
Title
Mechanistic Study of the Mechanochemical PdII-Catalyzed Bromination of Aromatic C–H bonds by Experimental and Computational methods_SI
Description
Experimental details, spectral data for new compounds, X-ray structures of compounds, in situ Raman experiments and computational details
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.