Diversifying Amino Acids and Peptides via Deaminative Reductive Cross-Couplings Leveraging High-Throughput Experimentation

21 March 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

A deaminative reductive coupling of amino acid pyridinium salts with aryl bromides has been developed to enable efficient synthesis of noncanonical amino acids and diversification of peptides. This method transforms natural, commercially available lysine, ornithine, diaminobutanoic acid (DAB), and diaminopropanoic acid (DAP) to aryl alanines and homologated derivatives with varying chain lengths. Attractive features include scalability, tolerance of pharma-relevant (hetero)aryls and functional groups, applicability to both monomeric amino acid and short peptide substrates, and compatibility with biorthogonal handles useful for chemical biology. Furthermore, these cross-couplings can be conducted in microscale and nanoscale and are amenable to solid-phase peptide synthesis platforms. The success of this work relied on an academic/industry collaboration and high-throughput experimentation to identify complementary conditions that proved critical for achieving broad scope of aryl bromides and pyridinium substrates.

Keywords

non-canonical amino acids
nickel catalysis
reductive coupling
peptides

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.