Electrostatic Contributions to the Stability of an End-on Cupric Superoxide

14 March 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We recently reported the presence of strong, local electrostatic fields in the secondary coordination sphere of a phosphinimine-decorated CuI complex, [(P3tren)CuI]+ (1). Here, we show that the low-temperature oxygenation of 1 yields a long-lived, three-fold symmetric η1-cupric superoxide complex, [(P3tren)CuII(O2)]+ (2). This latter complex was shown to abstract hydrogen atoms from 2,6-di-tert-butyl-4-methoxy phenol (KIE = 3.0 ± 0.3) and oxidize a cuprous tris(2-pyridylmethyl)amine complex to form a heteroleptic di(cupric)-μ-1,2-peroxide complex (4). The thermal stability of 2 was observed to be uncommonly high for sterically unprotected cupric superoxide complexes in this geometry (t1/2 = 10.4 h at -85 °C). Density functional theory (DFT) calculations implicate a unique electrostatic stabilization of the π*v orbital of the O2 unit, and the thermal stability of 2 is discussed in the context of the CuI/II redox potential of 1, the steric bulk in the complex’s secondary coordination sphere, and intramolecular electrostatic interactions.

Keywords

electrostatics
superoxide
copper
secondary coordination sphere
proton-coupled electron transfer
internal electrostatic fields
peroxide

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
PDF file containing synthetic procedures, complete spectroscopic data, and computational details.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.