Review
Authors
- Anastasiia Sharko University of Strasbourg ,
- Dimitri Livitz Columbia University ,
- Serena De Piccoli University of Strasbourg ,
- Kyle Bishop Columbia University ,
- Thomas Hermans
University of Strasbourg
Abstract
Supramolecular polymerization can be controlled in space and time by chemical fuels. A non-assembled monomer is activated by the fuel and subsequently self-assembles into a polymer. Deactivation of the molecule either in solution or inside the polymer leads to disassembly. Whereas biology has already mastered this approach, fully artificial examples have only appeared in the past decade. Here, we map the available literature examples into four distinct regimes depending on their activation/deactivation rates and the equivalents of deactivating fuel. We present increasingly complex mathematical models, first considering only the chemical activation/deactivation rates (i.e., Transient Activation), and later including the full details of the isodesmic or cooperative supramolecular processes (i.e., Transient Self-assembly). We finish by showing that sustained oscillations are possible in chemically fueled cooperative supramolecular polymerization and provide mechanistic insights. We hope our models encourage the exact quantification of activation, deactivation, assembly, and disassembly kinetics in future studies.
Content

Supplementary material

Supporting information
Analytical models, simulations, and analysis of kinetics of literature examples.