Relayed Hyperpolarization for Zero-Field Nuclear Magnetic Resonance

09 March 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Zero- to ultralow-field nuclear magnetic resonance (ZULF NMR) is a rapidly developing form of spectroscopy that drastically reduces the size and expense of portable devices with NMR capabilities. However, signal acquisition still requires a mechanism for orienting nuclear spins (e.g., generating a bulk magnetic moment for detection), and the currently employed methods only apply to a limited pool of chemicals or come at prohibitively high cost. Here, we demonstrate that the parahydrogen-based SABRE-relay method (SABRE = Signal Amplification by Reversible Exchange) can be used as a more general means of generating hyperpolarized analytes for ZULF NMR. This method is applicable to a wide range of small molecules possessing exchangeable protons, as we demonstrate here by observing zero-field J-spectra of [13C]-methanol, [1-13C]-ethanol, and [2-13C]-ethanol. We also explore the magnetic-field dependence of the proton hyperpolarization efficiency in SABRE-relay, and show the existence of a second, previously unexplored maximum at 19 mT. We further demonstrate that water does not significantly diminish SABRE-relay performance using benzylamine as polarization-transfer agent and use this to hyperpolarize ethanol extracted from a store-bought sample of vodka (1H polarization of ~0.1%). Applications for detecting trace chemical impurities and measuring J-spectra from natural extracts are also discussed.


Zero- to Ultralow-Field Nuclear Magnetic Resonance


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.