Insights of Shadow Trapping States and Intramolecular Charge Transfer on Simultaneous Redshift and Efficiency Enhancement of Electrochemiluminescence in Carbon Dots

04 March 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

While highly efficient electrochemiluminescence (ECL) emitters with finely tunable emission wavelengths are crucial for practical applications, the simultaneous modulation of ECL efficiency and emission wavelength, along with the deep understanding of the mechanism in the molecular level, remain elusive. Herein, we reported carbon dots (CDs) with both fine-tuned ECL efficiency and emission wavelength were achieved by phosphorus (P) doping, e.g., the ECL emission was finely tuned from 425 nm to 645 nm, and the efficiency (relative to the Ru(bpy)32+/K2S2O8 system) was promoted from 10.6% to 57.4%. Experimental and theoretical studies revealed the P dopants in the form of P-C and P-O groups not only imported shadow trapping states but also promoted a significant intramolecular charge transfer (ICT), which jointly induced the redshift and boosted the ECL performance of CDs. This work would provide a clue for the rational design of CDs to tune the ECL properties for advanced biomedical applications finely.

Keywords

phosphorus doping
wavelength
mechanism
shadow trapping state
intramolecular charge transfer

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
The Supporting Information file contains the experimental section, Figure S1-S29, and Table S1-S4.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.