A flexible and scalable scheme for mixing computed formation energies from different levels of theory

04 March 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Phase stability predictions are central to computational materials discovery efforts and have been made possible by large databases of computed properties from high-throughput density functional theory (DFT) calculations. Such databases now contain millions of calculations at the generalized gradient approximation (GGA) level of theory, representing an enormous investment of computational resources. Although it is now feasible to carry out large numbers of calculations using more accurate methods, such as meta-GGA functionals, recomputing the entirety of a database with a higher-fidelity method is impractical and would not effectively leverage the value embodied in existing calculations. Instead, we propose in this work a general procedure by which higher-fidelity, low-coverage calculations (e.g., meta-GGA calculations for selected chemical systems) can be combined with lower-fidelity, high-coverage calculations (e.g., an existing database of GGA calculations) in a robust and scalable manner to yield improved phase stability predictions. We demonstrate our scheme using legacy GGA(+\textit{U}) calculations and new r$^2$SCAN meta-GGA calculations from the Materials Project and illustrate its application to solid and aqueous phase stability. We discuss practical considerations for constructing mixed phase diagrams and present guidelines for prioritizing high-fidelity calculations for maximum benefit.

Keywords

density functional theory
phase stability
thermodynamics
formation energy

Supplementary materials

Title
Description
Actions
Title
Tabulated energies
Description
Comma-separated value (.csv) files containing the composition, spacegroup, GGA(+U ) and r2SCAN energies of all materials used to construct the phase diagrams presented in the main text.
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.