Abstract
Fluorinated amino acids play an important role in the field of peptide and protein engineering. Although several different syntheses have been published in recent decades, obtaining fluorinated amino acids on a gram-scale still poses a challenge. Furthermore, the described pathways to obtain fluorinated amino acids are based on different synthetic strategies, making a uniform approach from similar starting materials highly interesting. Chiral Ni(II) complexes were introduced as powerful tools in the synthesis of non-canonical amino acids. In this work, we present a strategy for the synthesis of a diverse range of fluorinated amino acids from the corresponding Ni(II) complex on a gram-scale from which the products can be obtained in enantiopure form (>94%ee). In addition, we describe syntheses for alkyl iodide building blocks which are required for the alkylation reactions with the corresponding Ni(II) complex. Finally, we characterized the synthesized fluorinated amino acids with regard to their hydrophobicity and α-helix propensity.
Supplementary materials
Title
Additional experimental details and methods
Description
Experimental data: peptide synthesis, optimization tables, 1D NOE spectra, NMR spectra and HPLC chromatograms
Actions
Title
checkCIF Report
Description
checkCIF/PLATON reports (X-ray data)
Actions