X-band Parallel-Mode and Multifrequency Electron Paramagnetic Resonance Spectroscopy of S = 1/2 Bismuth Centers

07 March 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The recent successes in the isolation and characterization of several bismuth radicals inspire the development of new spectroscopic approaches for the in-depth analysis of their electronic structure. Electron paramagnetic resonance (EPR) spectroscopy is a powerful tool for the characterization of main group radicals. However, the large electron-nuclear hyperfine interactions of Bi (209Bi, I = 9/2) have presented difficult challenges to fully interpret the spectral properties for some of these radicals. Parallel-mode EPR (B1 || B0) is almost exclusively employed for the study of S > 1/2 systems but becomes feasible for S = 1/2 systems with large hyperfine couplings, offering a distinct EPR spectroscopic method. Herein, we demonstrate the application of conventional X-band parallel-mode EPR for S = 1/2, I = 9/2 spin systems: Bi doped crystalline silicon (Bi:Si) and the molecular Bi radicals: [L(X)Ga]2Bi• (X = Cl, I) and [L(Cl)GaBi(MecAAC)]• (L = HC[MeCN(2,6-iPr2C6H3)]2). In combination with multifrequency perpendicular-mode EPR (X-, Q-, and W-band frequency), we were able to fully refine both of the anisotropic g- and A-tensors of these molecular radicals. The parallel-mode EPR experiments demonstrated and discussed here have the potential to enable the characterization of other S = 1/2 systems with large hyperfine couplings, which is often challenging by conventional perpendicular-mode EPR techniques. Considerations pertaining to the choice of microwave frequency are discussed for relevant spin-systems.

Keywords

electron paramagnetic resonance
bismuth
doped silicon
parallel-mode EPR
hyperfine

Supplementary materials

Title
Description
Actions
Title
Supplemental Information
Description
Additional discussion of hydrogen atom EPR theory, Bi:Si EPR intensity, and additional experimental EPR spectra of Bi radicals.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.