A Multiple-Technique Approach to Inferring Bio-electrochemical Reaction Parameters

02 March 2022, Version 2
This content is a preprint and has not undergone peer review at the time of posting.


Uncovering the secrets of the biological Faradaic reactions, essential to the understanding of complex metalloenzymes, requires an information recovery process that is robust, rapid and replicable. This paper is a description of the workflow we have developed over the course of inferring chemical reaction parameters for a simple protein system, a bacterial cytochrome domain from \textit{Cellvibrio japonicus}. This was a challenging task, as the signal-to-noise ratio in such protein-film voltammetry experiments is significantly lowered relative to the voltammetric data generated by simple chemicals. We have overcome these challenges by using a multiple-technique approach, which compensates for the difficulties inherent to analysis of the individual voltammetry experiments. We have shown that the parameters inferred are robust across multiple experiments performed for different preperations of the protein. This is an important proof-of-concept result for analysis of more complex metalloenzymes, which incorporate catalytic processes and multiple internal electron-transfer sites.


bio-electrochemical systems

Supplementary materials

Cytochrome PSV SI
Supplementary information


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.