Abstract
Oxaliplatin, a platinum compound in broad clinical use, can induce cell death through a nucleolar stress pathway rather than the canonical DNA damage response studied for other Pt(II) compounds. Previous work has found that the oxaliplatin 1,2-diaminocyclohexane (DACH) ring but not the oxalate leaving group is important to the ability to induce nucleolar stress. Here we study the influence of DACH ring substituents at the 4-position on the ability of DACH-Pt(II) compounds to cause nucleolar stress. We determine that DACH-Pt(II) compounds with 4-position methyl, ethyl, or propyl substituents induce nucleolar stress, but DACH-Pt(II) compounds with 4-isopropyl substituents do not induce nucleolar stress. This effect is independent of whether the substituent is in the axial or equatorial position relatively to the trans diamines of the ligand. These results suggest that spatially sensitive interactions could be involved in the ability of platinum compounds to cause nucleolar stress.
Supplementary materials
Title
Supporting Information
Description
Extended synthesis information
Actions