Selective Electrochemical Reductive Amination of Benzaldehyde at Heterogeneous Metal Surfaces

18 February 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Ammonia is one of the largest volume commodity chemicals, and electrochemical routes to ammonia utilization are appealing due to increasingly available renewable electricity. In this work, we demonstrate an electrochemical analogue to reductive amination for the synthesis of benzylamine from benzaldehyde and ammonia. Previous works on electrochemical reductive amination generally focus on proof-of-concept outer-sphere routes. We demonstrate an inner-sphere route, opening a large phase space of heterogeneous electrocatalysts that can direct selectivity and drive the reaction. In our system, imine hydrogenation proceeds on a silver electrocatalyst at ambient conditions in methanol with an initial Faradaic efficiency toward the primary amine product of ~80% and partial current greater than 4 mA/cm2 at -1.96 V vs. Fc/Fc+ (-1.36 V vs. NHE). Silver was selected after evaluating diverse transition metal electrocatalysts, and with density functional theory, we found that the reaction rate on various metals is best described by the charge density distribution above the metal surface, independent of molecular adsorption energies. On silver, the catalyst that promotes amination with the highest Faradaic efficiency and one of the highest partial currents, the rate-determining step was found to be the initial electron transfer to the imine. Overall, this work on the kinetics of electrochemical reductive amination represents a step toward inner-sphere electrochemical reductive amination systems for the synthesis of amines that currently rely on thermochemical reductive amination.


Reductive Amination
Heterogeneous Catalysis
Electrochemical Manufacturing

Supplementary materials

Supporting information including additional methods, data, and analysis.


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.