Featurization Strategies for Polymer Sequence or Composition Design by Machine Learning

17 February 2022, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The emergence of data-intensive scientific discovery and machine learning has dramatically changed the way in which scientists and engineers approach materials design. Nevertheless, for designing macromolecules or polymers, one limitation is the lack of appropriate methods or standards for converting systems into chemically informed, machine-readable representations. This featurization process is critical to building predictive models that can guide polymer discovery. Although standard molecular featurization techniques have been deployed on homopolymers, such approaches capture neither the multiscale nature nor topological complexity of copolymers, and they have limited application to systems that cannot be characterized by a single repeat unit. Herein, we present, evaluate, and analyze a series of featurization strategies suitable for copolymer systems. These strategies are systematically examined in diverse prediction tasks sourced from four distinct datasets that enable understanding of how featurization can impact copolymer property prediction. Based on this comparative analysis, we suggest directly encoding polymer size in polymer representations when possible, adopting topological descriptors or convolutional neural networks when the precise polymer sequence is known, and using chemically informed unit representations when developing extrapolative models. These results provide guidance and future directions regarding polymer featurization for copolymer design by machine learning.

Keywords

Machine learning
polymer design
featurization

Supplementary materials

Title
Description
Actions
Title
Supporting Information Text
Description
Description of simulation details and machine learning metadata.
Actions
Title
Additional supporting materials
Description
Machine learning metadata as described in supporting information text.
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.