Got Coke? Self-Limiting Poisoning Makes an Ultra Stable and Selective Sub-nano Cluster Catalyst

16 February 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Supported sub-nano clusters hold great promise as economical and highly active catalysts. However, they tend to deactivate rapidly by poisoning and sintering, impeding their widespread use. We find that self-limiting poisoning can stabilize and promote cluster catalysis, i.e., poisoning is not always detrimental, but can sometimes be exploited. Specifically, Pt-Ge alloy clusters supported on alumina undergo slow coking (carbon deposition) under conditions of thermal dehydrogenation, yet preserve strong binding sites. For the case of Pt4Ge/alumina, theory shows a number of thermally populated isomers, one of which catalyzes carbon deposition. Because the clusters are fluxional at high temperatures, this isomer acts as a gateway, slowly converting all the clusters to Pt4GeC2. The surprising result is that Pt4GeC2 is highly catalytically active and selective against further coking, i.e., coking produces functional, stable catalytic clusters. Ge and C2 have synergistic electronic effects, leading to efficient and highly selective catalytic dehydrogenation that stops at alkenes, and improving stability. Thus, under reaction conditions, the clusters develop into a robust catalyst, suggesting an approach to practicable cluster catalysis.


cluster catalysis
coke formation

Supplementary materials

Supplementary Information for Got Coke? Self-Limiting Poisoning Makes an Ultra Stable and Selective Sub-nano Cluster Catalyst
This PDF file includes: Supplementary Text Figs. S1 to S10 Tables S1 to S2 References


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.