Soot and charcoal are reservoirs of extracellular DNA

14 February 2022, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The vast potential of using sediment adsorbed DNA as a window to past and present biodiversity rely on the ability of solid surfaces to adsorb environmental DNA. However, a comprehensive insight into DNA adsorption at surfaces in general is lacking. Soot and charcoal are carbonaceous materials widespread in the environment where they readily can come in contact with extracellular DNA shed from organisms. Using batch adsorption, we measured DNA adsorption capacity at soot and charcoal as a function of solution composition, time and DNA length. We observed that the adsorption capacity for DNA is highest at low pH, that it increases with solution concentration and cation valency and that the activation energy for DNA adsorption at both soot and charcoal is ~50 kJmol-1, suggesting strong binding. We demonstrate how the interaction between DNA and soot and charcoal partly occurs via terminal base pairs, suggesting that, besides electrostatic forces, hydrophobic interactions play an important role in binding. The large adsorption capacities and strong binding of DNA to soot and charcoal are features important for eDNA research and provide a motivation for use of carbonaceous materials from, e.g. anthropogenic pollution or wildfire as sources of biodiversity information.

Keywords

environmental DNA
DNA extraction
Carbonaceous materials
Hydrophobic interaction
biodiveristy monitoring

Supplementary materials

Title
Description
Actions
Title
Supplementary Information file for: Soot and charcoal are reservoirs of extracellular DNA
Description
Adsorption model descriptions, SEM images and EDX spectra, quality of fit parameters for isotherm modelling
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.