Controlling the Emitter Orientation in Solution-processed Films through Introduction of Mesogenic Groups within a Multi-resonance Thermally Activated Delayed Fluorescence Emitter

07 February 2022, Version 1

Abstract

The use of thermally activated delayed fluorescence emitters and emitters that show preferential horizontal orientation of their transition dipole are two emerging strategies to enhance the efficiency of organic light-emitting diodes. We present the first example of a liquid crystalline multi-resonance thermally activated delayed fluorescent emitter, DiKTaLC. The neat film of DiKTaLC shows a photoluminescence quantum yield of 41%, a singlet-triplet energy gap, ΔEST, of 0.20 eV, and a delayed lifetime, τd, of 70.2 µs. The compound possesses a nematic discotic liquid crystalline phase between 80 °C and 110 °C. More importantly, the transition dipole moment of the spin-coated film shows preferential horizontal orientation, with an anisotropy factor, a, of 0.26. We thus demonstrate for the first time how self-assembly of a liquid crystalline TADF emitter can lead to the so-far elusive control of the orientation of the transition dipole in solution-processed films, which will be of relevance for high-performance solution-processed organic light-emitting diodes.

Keywords

thermally activated delayed fluorescence
TADF
multi-resonant thermally activated delayed fluorescence
MR-TADF
liquid crystal
horizontal orientation
transition dipole moment

Supplementary materials

Title
Description
Actions
Title
ESI
Description
ESI
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.