Abstract
Self-assembled organic nanomaterials can be generated by bottom-up assembly pathways where the structure is controlled by the organic sequence and altered using pH, temperature, and solvation. In contrast, self-assembled structures based on inorganic nanoparticles typically rely on physical packing and drying effects to achieve uniform superlattices. By combining these two chemistries to access inorganic-organic nanostructures, we aim to understand the key factors that govern the assembly pathway and structural outcomes in hybrid systems. In this work, we outline two assembly regimes between quantum dots (QDs) and reversibly binding peptoids. These regimes can be accessed by changing the solubility and size of the hybrid monomer unit. The hybrid monomers are synthesized via ligand exchange, assembled, and studied using ex-situ transmission electron microscopy as a function of time. The QDs were found to stabilize certain morphologies of peptoid intermediates and generate a unique final product consisting of multilayers of small peptoid sheets linked by QDs. The QDs were also seen to facilitate or inhibit assembly in organic solvents based on the relative hydrophobicity of the surface ligands, which ultimately dictated the solubility of the hybrid monomer unit. Increasing the size of the QDs led to large hybrid sheets with regions of highly ordered square-packed QDs. A second, smaller QD species can also be integrated to create binary hybrid lattices. These results create a set of design principles for controlling the structure and structural evolution of hybrid peptoid-QD assemblies and contribute to the predictive synthesis of complex hybrid matter.
Supplementary materials
Title
Supporting Information
Description
Materials, methods, and supplementary data.
Actions