Biocatalytically active and stable cross-linked enzyme crystals of halohydrin dehalogenase HheG by protein engineering

31 January 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

A major drawback for practical application of halohydrin dehalogenase HheG in biocatalysis is its rather low thermal stability and low organic solvent tolerance. We therefore pursued a stabilization of HheG via immobilization as cross-linked enzyme crystals. Since glutaraldehyde inactivates HheG, we introduced a cysteine residue in the crystal interface, which enabled thiol-specific cross-linking at predefined cross-linking sites. Variant HheG D114C displayed improved crystallizability and yielded stable and catalytically active CLECs using bis-maleimidoethane as cross-linker. Effective cross-linking at the predefined site could be confirmed via the CLEC crystal structure. Compared to soluble enzyme, the CLECs displayed significantly improved stability and activity at higher temperatures, lower pH values and in the presence of water-miscible organic solvents, which enabled their reuse over 21 days in the azidolysis of cyclohexene oxide.

Keywords

Cross-linked enzyme crystals
Crystal contact engineering
Enzyme immobilization
Halohydrin dehalogenase
Temperature stability
Cosolvent stability
Reusability

Supplementary materials

Title
Description
Actions
Title
Supporting information
Description
Additional tables and figures
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.