Structure-based relaxation analysis reveals C-terminal [1-13C]glycine-d2 in peptides has long spin-lattice relaxation time that is applicable to in vivo hyperpolarized magnetic resonance studies

28 January 2022, Version 1

Abstract

Dissolution-dynamic nuclear polarization (d-DNP) is a state-of-the-art technology that can dramatically enhance the detection sensitivity of nuclear magnetic resonance (NMR). DNP NMR has been applied to small molecules with stable isotopes and has been used to obtain metabolic and physiological information in vivo. However, the hyperpolarized state exponentially decays back to the thermal equilibrium state, depending on the spin-lattice relaxation time (T1). This signal decay has remained a major problem associated with this technology. Therefore, DNP NMR molecular probes useful for in vivo analysis have been limited to naturally occurring small molecules that inherently show long T1. While peptides are promising targets for DNP NMR studies, because of the limitation in T1, DNP NMR molecular probes applicable in vivo have been limited to amino acids or dipeptides. Herein we propose a 13C-labeling strategy to utilize the C-terminal [1-13C]Gly-d2 residue for realizing long T1 in peptides. Structure-based T1 relaxation analysis of amino acids and peptides revealed that (1) T1 does not decrease monotonically with increasing molecular weight and (2) T1 is not significantly affected by a side chain on the neighboring amino acid residue. These findings suggest that the C-terminal [1-13C]Gly-d2 residue affords sufficiently long T1 for biological uses, even in oligopeptides, and allowed us to develop 13C-b- casomorphin-5 (Tyr-Pro-Phe-Pro-[1-13C]Gly-d2, T1 = 24 ± 4 s at 3 T in H2O) and 13C-glutathione (g-Glu-Cys-[1-13C]Gly-d2, T1 = 58 ± 3 s at 3 T in H2O) as DNP NMR probes with long T1. We succeeded in in vivo detection of enzymatic conversions of these two probes. These results demonstrate the utility of our strategy and would contribute to further expansion of the substrate scope for DNP applications.

Keywords

Hyperpolarized MRI
molecular probe
peptide

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supporting Figures, Schemes, Tables, Materials and Methods.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.