Uncovering the key role of distortion in tetrazine ligations guides the design of bioorthogonal tools that defy the reactivity/stability tradeoff

27 January 2022, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The tetrazine/trans-cyclooctene ligation stands out from the bioorthogonal toolbox due to its exceptional reaction kinetics, enabling multiple molecular technologies in vitro and in living systems. Highly reactive 2-pyridyl-substituted tetrazines have become state-of-the-art for time-critical processes and selective reactions at very low concentration. It is widely accepted that the enhanced reactivity of these chemical tools is attributed to the electron-withdrawing effect of the heteroaryl substituent. In contrast, we show that observed reaction rates are way too high to be explained on this basis. Computational investigation of this phenomenon revealed that distortion of the tetrazine caused by intramolecular N-N repulsion plays a key role in accelerating the cycloaddition step. While we show that the limited stability of tetrazines under physiological conditions strongly correlates with the electron-withdrawing effect of the substituent, intramolecular destabilization increases the reactivity without reducing stability. Guided by these fundamental insights we demonstrate application in the design of highly reactive tetrazines with superior stability, finally evading the reactivity/stability trade-off for bioorthogonal tetrazine tools.

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Experimental details on computational methods, organic synthesis, reaction kinetics, compound stability and characterization, copies of NMR spectra
Actions
Title
xyz-coordinates
Description
xyz-coordinates of all calculated geometries
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.