Abstract
Data-driven material exploration is a ground-breaking research style; however, daily experimental results are difficult to record, analyze, and share. We report a new data platform that losslessly describes the relationships of structures, properties, and processes as graphs in electronic laboratory notebooks. As a model project, organic superionic glassy conductors were explored by recording over 500 different experiments. Automated data analysis revealed the essential factors for a remarkable room temperature ionic conductivity of 10^−4-10^−3 S/cm and a lithium transference number of around 0.8. In contrast to previous materials research, everyone can access all the experimental results, including graphs, raw measurement data, and data processing systems, at a public repository. Direct data sharing will improve scientific communication and accelerate integration of material knowledge.