Thermal Functionalization of Alkanes with Carbon Electrophiles

27 January 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Alkane functionalization with carbon-electrophiles remains virtually unexplored under thermo-driven hydrogen atom transfer (HAT) conditions due to a challenge of integrating oxidation and reduction in a single operation. We report here a Ni-catalyzed arylation and alkylation of alkane C‒H bonds with organohalides to forge C(sp3)‒C bonds by merging easily accessible Zn and tBuOOtBu (DTBP) as the external reductant and oxidant. The mild and easy-to-operate protocol enables facile carbofunctionalization of N-/O-α- and cyclohexane CH bonds, and preparation of a number of bioactive compounds and drug derivatives. Preliminary mechanistic studies implied a Ni(I)-mediated DTBP reduction followed by alkane HAT to tBuO radical. The marked compatibility of Zn and DTBP with nickel-catalysis may invoke the development of external oxidant and reductant co-trigged thermoredox bond forming approaches based upon challenging substrates.

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.