Multimodal Plasmonic Hybrids: Efficient and Selective Photocatalysts

24 January 2022, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Important efforts are currently under way in order to implement plasmonic phenomena in the growing field of photocatalysis, striving for improved efficiency and reaction selectivity. A significant fraction of such efforts has been focused on distinguishing, understanding and enhancing specific energy transfer mechanisms from plasmonic nanostructures to their environment. Herein we report a synthetic strategy that brings together two of the main physical mechanisms driving plasmonic photocatalysis into an engineered system by rationally combining the photochemical features of energetic charge carriers and the electromagnetic field enhancement inherent to the plasmonic excitation. We do so by creating hybrid photocatalysts that integrate multiple plasmonic resonators in a single entity, controlling their joint contribution through spectral separation and differential surface functionalization. This strategy allows us to study the combination of different photosensitization mechanisms when activated simultaneously. Our results show that hot electron injection can be combined with an energy transfer process mediated by near-field interaction, leading to a significant increase of the final photocatalytic response of the material. In this manner, we overcome the limitations that hinder photocatalysis driven only by a single energy transfer mechanism, and move the field of plasmonic photocatalysis closer to energy-efficient applications. Furthermore, our multimodal hybrids offer a test system to probe the properties of the two targeted mechanisms in energy-related applications such as the photocatalytic generation of hydrogen and open the door to wavelength-selective photocatalysis and novel tandem reactions.

Keywords

plasmonic photocatalysis
hybrid nanomaterials
photocatalytic hydrogen generation
hot electron injection
plasmon energy transfer

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.