Importance of Molecular Symmetry for Enantiomeric Excess Recognition by NMR

21 January 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Recently prochiral solvating agents (pro-CSA) became a spotlight for the detection of enantiopurity by NMR. Chemical shift non-equivalency in achiral hosts introduced by the presence of chiral guest yields observable resonance signal splitting correlating to the enantiomeric excess (e.e.). In this work, symmetry is our lens to explain porphyrin-based supramolecular receptors’ activity in a chiral environment. Based on extensive NMR analyses of the atropisomeric receptors, host symmetry is shown to be affected by porphyrin nonplanarity and further desymmetrized in the presence of a chiral guest. We have formulated a simple, symmetry-based protocol that can be used to identify pro-CSA candidates. As such, the exposed porphyrin inner core (N–H), with its strong hydrogen bond abilities, for the first time, has been exploited in enantiomeric composition analysis. Our approach in e.e. detection by N–H signals appearing in a previously underutilized region of the spectrum (below 0 ppm.), shows chemical shifts (the e.e. dependent splitting) three times more sensitive to enantiomeric compositions than previously reported systems. The findings are complemented by extensive 2D NMR studies, including the first reporting of e.e. dependent  in non-hydrogen NMR, and supporting by density functional theory (DFT) calculations.

Keywords

Enantiomeric Excess
porphyrinoids
atropisomers
NMR
symmetry elements

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.