Electrocatalytic Oxidation of Dinitrogen to Nitric Acid via Direct Ten–Electron Transfer Using Manganese Phthalocyanine

21 January 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Ammonia produced through the energy intensive Haber–Bosch process, undergoes catalytic oxidation for the manufacture of commercial nitric acid in the age–old Ostwald process. This two–step energetically non–viable industrial process demands the quest of an alternative single step electrocatalysis from the last century. The quest ends up in optimism when we unravel a ten–electron pathway associated with electrochemical dinitrogen oxidation reaction (N2OR) to nitric acid by manganese phthalocyanine (MnPc) hierarchical nano–structures (HNs) at STP. The catalyst delivers nitric acid yield of 720 µmol h–1 g–1cat @ 1.9 V vs. RHE and F.E. of 17.32 % @ 1.7 V vs. RHE in 0.05 M HCl. The local co–ordination environment (Mn–N4) during electrocatalysis process is ensured by the XAFS study. DFT based calculations express that the Mn site of MnPc is the main active center for nitrogen adsorption for N2OR, suppressing the OER.

Keywords

nitrogen oxidation
nitric acid
green synthesis
Ostwald process
Manganese phthalocyanine

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.