The structure and location of 18-crown-6 ether in zeolites RHO and ZK-5

20 January 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


The use of organic additives presents the greatest versatility and control of zeolite synthesis in order to prepare novel architectures for desired applications. Despite this prospect, there is little clarity of how organic additives are involved in framework assembly and the range of behaviours that are available. To address this issue, we have considered zeolites RHO and ZK-5 which can both be prepared using 18-crown-6 ether as an additive. Previously, this additive has shown to employ different structure directing behaviours to assemble a variety of zeolites. We have used high resolution powder X-ray diffraction and Rietveld refinement to determine structural models for zeolites RHO and ZK-5 with 18-crown-6 ether occluded in the framework. In doing so, we can observe the identity, location and orientation of the occluded additive and reason the structure directing behaviour in synthesis. We report that the isolated 18-crown-6 ether molecule is involved in the assembly of zeolite RHO, and for zeolite ZK-5 it is the K+ coordinated macrocation. In both cases the relevant additive is disordered in the framework, suggesting that they behave as space-filling species that stabilise the formation of the α-cage.


Rietveld refinement

Supplementary materials

The structure and location of 18-crown-6 ether in zeolites RHO and ZK-5. Supplementary
Supplementary Information The structure and location of 18-crown-6 ether in zeolites RHO and ZK-5


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.